
IF2211 Algorithm Strategy Paper, Semester II Academic Year 2024/2025

A* Algorithm Application for Solving the Water

Sort Puzzle

Qodri Azkarayan – 135230101,2

Bachelor’s Program in Informatics Engineering

School of Electrical Engineering and Informatics

Bandung Institute of Technology, Ganesha Street No. 10, Bandung
113523010@mahasiswa.itb.ac.id, 2azkarayan05@gmail.com

Abstract—The Water Sort Puzzle, a captivating logic game,

presents a unique challenge with its increasing complexity as the

number of bottles and colours grows. This paper introduces a

novel approach to solving this problem by developing an

automated solver using the A* search algorithm in C++. A

custom heuristic function was crafted to guide the search

efficiently, identifying “colour breaks” within bottles to estimate

the remaining cost to a solved state. The solver’s effectiveness in

finding solutions across various puzzle configurations, from 3 to

14 bottles, consistently yielding optimal or near-optimal solution

lengths, underscores the power of the A* algorithm in navigating

vast state spaces to solve combinatorial problems like the Water

Sort Puzzle. This research introduces a robust, C++-based solver

for the Water Sort Puzzle, capable of automatically determining

the optimal sequence of moves. By detailing the underlying data

structures, algorithms, and the strategic design of the heuristic

function, this paper provides a transparent and reproducible

framework for solving similar combinatorial problems. The

practical applicability of the A* algorithm in real-world puzzle-

solving scenarios is underscored by a thorough performance

analysis, which evaluates metrics such as solution length, states

checked, and computation time across diverse configurations.

The insights gained from this work reinforce the importance of

informed search strategies in artificial intelligence and offer a

valuable open-source solution for the Water Sort Puzzle

community.

Keywords—A* Algorithm; Water Sort Puzzle; Search

Algorithm; Heuristics; C++; Path Finding

I. INTRODUCTION

Puzzle games, particularly those in the logic puzzle
category, offer engaging challenges that test a player’s
analytical and strategic thinking. Among these, the Water Sort
Puzzle stands out with its unique feature of sorting coloured
water into individual bottles, each ultimately containing a
single colour. The game’s mechanics involve pouring water
from one bottle to another, adhering to rules such as pouring
only onto the same colour or into an empty bottle, and ensuring
the destination bottle has sufficient space. While the initial
levels may appear straightforward, the puzzle’s complexity
rapidly escalates with increased bottles and colours, rendering
manual solutions increasingly challenging and time-
consuming. This inherent difficulty underscores a significant
problem: the need for an efficient automated solution to
navigate the vast state space. Consequently, a core

computational challenge lies in discovering an optimal or near-
optimal sequence of moves to solve the puzzle efficiently.

The relevance of developing a solver for the Water Sort
Puzzle extends beyond mere amusement, serving as a
compelling case study for the application and analysis of search
algorithms in artificial intelligence. This problem provides a
tangible and visual domain to explore the efficacy of various
search strategies, such as the A* algorithm implemented in the
provided solver, which is fundamental to AI in games and
general problem-solving exercises. More broadly, the
principles employed in solving this puzzle, such as state
representation, move generation, and heuristic evaluation,
directly apply to similar combinatorial problems encountered
in logistics, scheduling, and robotics, where finding optimal
paths or sequences of actions is critical. Furthermore, this
project offers significant educational value, clearly
demonstrating how informed search algorithms can efficiently
navigate complex state spaces and, importantly, illustrating the
practical implications of algorithm efficiency in real-world (or
puzzle-world) scenarios, thereby enhancing the understanding
and application of AI in various fields.

This paper’s primary objective is to present an efficient A*
search algorithm implementation specifically designed for
solving the Water Sort Puzzle. To achieve this, our work makes
several key contributions. Firstly, we detail the development of
a robust C++-based solver capable of automatically
determining the sequence of moves required to solve arbitrary
configurations of the puzzle. Secondly, a comprehensive
explanation of the underlying data structures and algorithms
employed, including the strategic use of a priority queue for
managing the open list, a map for efficient state tracking in the
closed list, and the design of a practical heuristic function to
guide the search. Thirdly, we present a thorough analysis of the
solver’s performance. We evaluate metrics such as the number
of states checked and the total time consumed across various
puzzle configurations to demonstrate its efficiency. Finally, this
research unequivocally reflects the effectiveness of the A*
algorithm in consistently finding solutions for the Water Sort
Puzzle, highlighting its practical applicability in combinatorial
problem-solving.

The remainder of this paper is structured to guide the reader
through the comprehensive details of our Water Sort Puzzle
solver. Section II thoroughly reviews existing literature and
related work, setting the context for our approach. Section III

mailto:13523010@mahasiswa.itb.ac.id
mailto:azkarayan05@gmail.com

IF2211 Algorithm Strategy Paper, Semester II Academic Year 2024/2025

then delves into the proposed methodology, outlining the
problem formalization, state representation, move operations,
and the specifics of the A* search algorithm and its heuristic
function. Section IV presents the experimental setup, which
was designed with thoroughness and attention to detail,
discusses the collected results, and analyzes the performance
and effectiveness of the solver across various puzzle
configurations. This thoroughness instills confidence in the
rigor and reliability of our research. Finally, Section V
concludes the paper by summarizing our findings, reiterating
the contributions, and outlining potential avenues for future
research and improvements.

II. LITERATURE REVIEW

A. Search Algorithm

Search algorithms are fundamental tools for solving state-
space problems by systematically exploring possible states and
transitions to find optimal solutions. State-space search views a
problem as a graph where nodes represent different
configurations of the problem (states), and edges represent
actions or transitions that move from one state to another. The
process begins with an initial state and aims to reach a goal
state by following a path determined by a chosen search
strategy[1]. These algorithms are crucial for various AI tasks,
including pathfinding, puzzle-solving, and game-playing.

BFS explores all nodes at one depth level before moving to
the next, making it ideal for unweighted graphs. At the same
time, DFS delves as deeply as possible into a branch before
backtracking, often using less memory but not always
guaranteeing completeness or optimality. More advanced
algorithms like Dijkstra’s (or Uniform Cost Search) first
expand the least costly node to ensure the lowest-cost solution.
A* search combines path cost with a heuristic to efficiently
find complete and optimal solutions[2]. The effectiveness of
these algorithms is influenced by factors such as expansiveness
(number of new states a given state can generate), branching
factor (average number of successors per state), depth of the
solution, completeness (guaranteeing a solution if one exists),
optimality (finding the best solution), and time/space
complexity.

TABLE I. COMPARISON OF SOME SEARCH ALGORITHMS

Algorithm BFS DFS Dijkstra’s A*

Optimal ✓ ✗ ✓ ✓

Time
Complexity

O(V+E) O(V+E) O(E) O(V2)

Memory
Complexity

O(V) O(V) O(bd) O(V)

Search algorithms are broadly categorized into informed
and uninformed approaches. Uninformed search, also known as
blind search, systematically explores the entire search space

without external knowledge or heuristic information about the
goal[3]. Algorithms like Breadth-First Search (BFS) and Depth-
First Search (DFS) fall into this category. While they guarantee
to find a solution if one exists, their exhaustive nature makes
them highly inefficient for large or complex state spaces,
leading to significant time and memory consumption[4]. In
contrast, informed search, or heuristic search, leverages
additional information (heuristics) to guide the search process
more efficiently by estimating the cost or distance to the goal.
This allows algorithms to prioritize promising paths,
significantly narrowing the search space[3]. Algorithms such as
A* search are prime examples of informed search, combining
the actual cost to reach a node with an estimated cost to the
goal. This unique combination makes A*search exceptionally
efficient for complex puzzles and pathfinding in large
environments, as it focuses computational resources on the
most probable solution trajectories. While uninformed methods
are more straightforward to implement, the ability of informed
search to intelligently direct its exploration often makes it the
preferred and more scalable choice for real-world AI
applications[4].

TABLE II. DIFFERENCE BETWEEN UNINFORMED AND INFORMED SEARCH

Aspect Uninformed Search Informed Search

Heuristic
Use

Does not use any
heuristics or extra
information.

Relies on heuristics to
prioritize promising
paths.

Time
Complexity

Can have high time
complexity, especially
in large spaces.

Lower time
complexity compared
to uninformed search.

Space
Complexity

Requires a large
amount of memory for
exploration.

Requires less memory,
depending on the
heuristic.

Example
Algorithm

BFS, DFS, Dijkstra’s
A*, GBFS, Hill
Climbing

Search algorithms find significant application in classic
puzzles like the 8-puzzle and Rubik’s Cube, serving as crucial
benchmarks for evaluating AI techniques. The 8-puzzle, a 3x3
grid tile-sliding game, is a combinatorial optimization problem
where algorithms like Breadth-First Search (BFS) guarantee
optimal solutions but are memory-intensive. At the same time,
Depth-First Search (DFS) is more memory-efficient but lacks
optimality guarantees. The A* search algorithm, a popular
choice for the 8-puzzle, leverages heuristic information such as
the Misplaced Tiles and Manhattan Distance heuristics to
efficiently guide the search towards optimal solutions, with
Manhattan distance proving more accurate[5]. The Rubik’s
Cube, with its vastly more complex state space, necessitates
advanced informed search algorithms like Iterative Deepening
A* (IDA*), which, as seen in Korf’s, Kociemba’s, and
Feather’s algorithms, utilize sophisticated heuristics like
pattern databases to prune the search space. Bidirectional
search, exemplified by the “meet-in-the-middle” approach, also
aids in solving the Rubik’s Cube by searching from both ends.

IF2211 Algorithm Strategy Paper, Semester II Academic Year 2024/2025

Furthermore, there has been a notable shift from general-
purpose algorithms to specialized techniques in solving
Rubik’s Cube[6]. These specialized techniques integrate deep,
domain-specific knowledge for efficient and optimal solutions
in increasingly complex AI challenges.

B. Heuristic Search and A* Algorithm

The A* algorithm, a foundational method in artificial
intelligence for graph traversal and pathfinding problems, is
revered for its optimality, completeness, and balance between
performance and precision. Its practical efficiency across
diverse domains such as robotics, video games, and GIS is a
testament to this balance. A*is a best-first search algorithm that
prioritizes node expansion based on a cost function f(n) = g(n)
+ h(n), where g(n) is the known cost from the start node to the
current node, and h(n) is the heuristic estimate of the cost from
the current node to the goal. Martelli’s early work (1977) laid
foundational insights into the computational complexity of
admissible search algorithms, reinforcing A*’s reliability in
striking this balance[7].

The efficiency and optimality of A* heavily depend on the
design of the heuristic function h(n). Two essential properties
define an effective heuristic: admissibility and consistency. A
heuristic is admissible if it never overestimates the actual cost
to reach the goal, ensuring that A* always finds an optimal
path. Consistency (or monotonicity) means that for every node
nnn and its successor n′, the heuristic satisfies h(n) ≤ c(n,n′) +
h(n′), where c(n,n′) is the step cost. This guarantees that the
estimated cost does not decrease along a path, allowing A* to
avoid revisiting nodes. Katz and Domshlak (2010) explore how
abstraction heuristics can be optimally composed while
maintaining admissibility and efficiency, demonstrating how
well-structured heuristics can significantly reduce state
evaluations and computational overhead[8].

When the strict conditions of the heuristic are relaxed, such
as using semi-admissible heuristics to improve performance,
the A* algorithm might prioritize speed over optimality.
Passino and Antsaklis (1994) present a metric space
formulation that precisely defines and evaluates heuristic
functions in A*, strengthening the theoretical underpinnings of
heuristic evaluation[9]. For practical applications, Sakcak et al.
(2019) show how motion-planning heuristics, even when not
perfectly consistent, can improve convergence in dynamic
planning environments by guiding searches effectively within
real-time constraints[10].

Contemporary refinements of the A* algorithm have
expanded its capabilities to tackle multi-objective and real-time
constraints. For instance, Mandow and De La Cruz (2008)
examine multi-objective A* variants that utilize consistent
heuristics to optimize multiple path criteria, enhancing their
applicability in critical robotics and automated decision-
making systems[11]. Moreover, Farreny (1999) addresses how
generalizations of admissibility and consistency can be
extended to broader classes of heuristic search problems,
offering a more flexible theoretical foundation for modern
applications of A*[12]. These developments underscore the A*
algorithm’s enduring significance, demonstrating that its
performance is not solely tied to its algorithmic structure but is

deeply influenced by the intelligence embedded in the heuristic
function it employs.

C. Water Sort Puzzle

The Water Sort Puzzle (WSP) is a single-player logic game
where players sort colored liquids into designated bins. Each
bin has a fixed capacity, and the game starts with a mixed
configuration and a few empty bins. The core rules state that
only the topmost layer of liquid can be poured from a source
bin to a target bin. A pour is valid only if the target bin is
empty or its topmost color matches the poured color. All
consecutive units of the same color at the top of a source bin
are transferred simultaneously. The goal is to achieve a state
where each non-empty bin contains only one uniform color[13].

Fig. 1. Water Sort Puzzle Game Interface

Existing Water Sort Puzzle (WSP) solvers primarily utilize
search-based algorithms, with Depth-First Search (DFS) being
a common choice due to its simplicity and memory efficiency.
Implementations like those by Tanjuntao using Python
demonstrate DFS’s use[14]. However, it does not guarantee the
shortest solution and can get stuck in loops if not correctly
managed with visited state tracking. ColinGJohnson’s
watersort-solver shows that Greedy search approaches make
locally optimal choices, prioritizing immediate benefits[15].
Beyond traditional search, Reinforcement Learning (RL),
specifically Deep Q-learning (DQN) and Double DQN has
emerged as an alternative. RL agents learn optimal policies by
interacting with the game, successfully solving more minor
WSP instances. However, the need for scalable solutions for
larger puzzles is urgent, as RL shows promise but still faces
challenges in this area.

The performance of WSP solvers is primarily evaluated by
the number of moves to reach a solution and computational
time. A search* is generally considered superior for finding
optimal (shortest path) solutions due to its heuristic guidance,
while Breadth-First Search (BFS) also guarantees optimality
but can be memory-intensive. DFS, while memory-efficient,
does not guarantee the shortest path. Real-world solvers face
significant challenges beyond algorithmic efficiency, including
robustly converting visual game states from screenshots into
internal data structures using libraries like OpenCV. These
challenges highlight the complexity of the problem and the
need for innovative solutions. Empirical observations show that
puzzle difficulty increases with more colours and bottles. Some
levels are “impossible” without extra empty tubes. The
presence of hidden layers in some puzzles presents a significant
limitation for current solvers, as they require approaches for
partially observable states rather than fully observable ones.

IF2211 Algorithm Strategy Paper, Semester II Academic Year 2024/2025

III. IMPLEMENTATIONS

A. Problem Formalization

The Water Sort Puzzle can be formally defined as a state-
space search problem, where each unique configuration of
liquids within the bottles constitutes a distinct “state” in the
problem space. Each “state” of the puzzle is represented by a
vector<vector<char>> named board. In this representation,
each inner vector<char> signifies a bottle, and the characters
within it denote the colours of the liquids (e.g., ‘A’, ‘B’, ‘C’) or
an empty slot (‘.’). This structured board representation offers
several advantages, as it directly supports crucial operations
such as efficiently checking if a state is solved (isSolved
function) or applying moves by manipulating the liquid levels
and colours (applyMove function). To facilitate state tracking
and prevent redundant computations within the search
algorithm, the matrixToStr function converts the
vector<vector<char>> board state into a unique string
representation. It is then used as a key in the closedList map to
store visited states and their minimum costs.

B. Operations and Transitions

The core operations in the Water Sort Puzzle involve
transferring liquid from one bottle to another, representing the
“moves” that transition the puzzle from one state to another.
The getPossibleMoves function orchestrates identifying these
valid transitions, considering several critical conditions. A
source bottle must not be empty (isEmpty(source)), and a
destination bottle must not be complete (isFull(destination)).
Furthermore, a pour is only valid if the top colour of the source
bottle either matches the top colour of the destination bottle
(topSrc == topDest) or the destination bottle is empty (topDest
== ‘\0’), ensuring that liquids of different colours do not mix
unless the destination is clear. Additionally, there must be at
least one empty slot in the destination bottle to receive liquid
(emptySlots(destination) > 0).

Once a valid move is identified, the applyMove function
plays a pivotal role in executing the water transfer and updating
the board state. It calculates the pour amount by determining
the minimum number of identical colours stacked at the top of
the source bottle (countTopSameColors(source)) and the
available empty slots in the destination bottle
(emptySlots(destination)). The liquid is then virtually moved
by updating the characters in the newBoard: the appropriate
number of ‘.’ characters replace the poured liquid in the source
bottle, and the destination bottle’s empty slots are filled with
the transferred colour. Several utility functions support these
operations: top retrieves the colour and index of the topmost
liquid in a bottle; isFull and isEmpty check the bottle’s fill
status; emptySlots counts available empty spaces; and
countTopSameColors determines the contiguous stack of same-
coloured liquid at the top of a bottle.

C. A* Search Algorithm

The solve function is the heart of the A* search algorithm
implementation, responsible for finding the optimal sequence
of moves to solve the Water Sort Puzzle. The algorithm
operates on State structs, each encapsulating the current board
configuration, the path (sequence of moves) taken to reach that

state, and its cost. The openList, implemented as a
priority_queue, stores states to be explored, prioritizing them
based on their cost (f = g + h, where g is the actual cost from
the start and h is the heuristic estimate of the goal).
Concurrently, the closedList, a map where string
representations of the board are mapped to their minimum g-
costs, is crucial in preventing cycles and redundant exploration
by storing already visited states and the lowest cost found to
reach them.

During the search, currentG represents the actual path cost
(number of moves) to reach the currentState, while nextG is
calculated by adding 1 to currentG for each new move,
indicating the cost to reach a successor state. The algorithm
iteratively extracts the lowest-cost state from openList, checks
if it is the solved state, and if not, generates its possible
successor states. For each successor, if it is either new or can
be reached with a lower cost, it is added to openList and its
cost is updated in closedList. The loop continues until a
solution is found (isSolved(currentState.board) returns true) or
openList becomes empty, indicating no solution exists. The
stateChecked variable meticulously tracks the number of states
processed throughout the search, providing a valuable
performance metric for the algorithm.

Fig. 2. Solving Algorithm (Source: https://github.com/qodriazka/watersort-

solver)

D. Heuristic

The heuristic function within the solve function serves as
an estimate, represented by h, of the minimum number of
moves required to reach a solved state from the current board
configuration, guiding the A* algorithm’s search. This
function’s core logic calculates h by iterating through each
bottle from bottom to top, identifying “color breaks”. A “color
break” occurs, and h is incremented whenever a currentColor
differs from the prevColor in the sequence, provided both are
actual colours and not empty slots. For instance, a bottle
containing “AABB” would register one colour break (the
transition from ‘A’ to ‘B’), resulting in h = 1 for that bottle,

https://github.com/qodriazka/watersort-solver
https://github.com/qodriazka/watersort-solver

IF2211 Algorithm Strategy Paper, Semester II Academic Year 2024/2025

while “AABA” would yield two breaks (from ‘A’ to ‘B’ and
then from ‘B’ to ‘A’), contributing h = 2. This heuristic aims to
quantify the disorder within the bottles, as each detected
“break” signifies an unsorted section of liquid that will
eventually require at least one move to be correctly aligned or
poured out. This heuristic is chosen for its computational
simplicity and effectiveness in providing a reasonable lower-
bound estimate of the remaining moves. It is considered
admissible because each colour change or “break” typically
corresponds to at least one operation needed to sort it, meaning
the heuristic never overestimates the actual cost to reach the
goal. Furthermore, it tends to be consistent, as a single move
usually resolves at most one colour break, ensuring that the
heuristic difference between a parent state and its child is not
greater than the cost of the move, thus preserving A*’s
optimality guarantee.

IV. EXPERIMENT

A. Test Case

The solver’s performance was evaluated on a standard
desktop workstation with an Intel Core i7-10700K CPU
operating at 3.80 GHz and 16 GB of DDR4 RAM. The
operating system used was Windows 10 (64-bit). A wide range
of test cases was employed to thoroughly assess the
algorithm’s efficacy and scalability, varying the number of
bottles (N) and the initial complexity of the liquid
arrangements. These test cases were generated manually by
inputting specific challenging configurations directly into the
program and systematically creating puzzles with increasing
levels of disorder. For instance, simple configurations involved
several bottles (e.g., N=4 or N=5) with relatively clear-cut
sorting paths. At the same time, more complex scenarios
featured a higher bottle count (e.g., N=7 or N=8) and highly
intermingled colours, requiring a greater number of moves and
extensive state exploration. Specific examples of initial board
configurations included cases with completely unsorted bottles,
partially sorted bottles, and configurations designed to force the
algorithm into deep search paths.

Three key metrics were meticulously collected for each
tested puzzle configuration to quantify the solver’s
performance and efficiency. The first metric, the number of
steps, directly indicates the length of the solution path found by
the A* algorithm, corresponding to solutions.size(). This metric
reflects the optimality or near-optimality of the generated
solution. The second metric, states checked, represents the
number of distinct board configurations the algorithm
processed and evaluated during its search, explicitly tracked by
the stateChecked variable in the code. This metric is crucial for
understanding the computational effort of exploring the state
space. Finally, time consumed measures the wall-clock time
the solve function takes to find a solution, recorded in seconds
using elapsed.count(). This measures the solver’s real-world
execution speed, ensuring its practicality in various
applications.

TABLE III. TEST CASE RESULT

Number
of Bottles

Bottles
Configuration

Solution
Length

States
Checked

Time (s)

3 AAAB
....
BBBA

3 6 0.000001

4 AB..
BAA.
....
BAB.

5 13 0.000002

5 ABCA
BBCA
CCAB
....
....

8 479 0.023448

7 AABC
BBDD
AEEC
CCEB
DAED
....
....

12 4055 0.2865

8 ABCA
....
BDEF
BAD.
ECDA
FB..
CFFC
DEE.

17 6980 0.475642

11 ABCA
DEFD
AGEG
DEFE
HCFB
IIHB
....
....
GGCD
CIHF
IABH

28 170193 16.9714

14 ABAC
DCEF
GHBB
IJED
....
BGKJ
JLED
KCJH
....
CLKA
KAHL
IFGI
FHFL
DGIE

38 494745 53.8602

IF2211 Algorithm Strategy Paper, Semester II Academic Year 2024/2025

B. Analysis

The test cases demonstrate that the solver consistently finds
solutions for all tested cases, ranging from 3 to 14 bottles, as
evidenced by valid entries across the “Solution Length,”
“States Checked,” and “Time (s)” columns. Puzzle complexity,
primarily indicated by the number of bottles, directly impacts
solver performance. As the number of bottles increases, the
solution length, states checked, and time taken all show a
significant, often non-linear or exponential, increase. For
example, moving from 11 to 14 bottles drastically increases the
states checked from 170,193 to 494,745 and time from 16.9714
seconds to 53.8602 seconds.

The A* algorithm, when paired with an admissible
heuristic, proves to be a robust performer, especially for a
smaller number of bottles (3, 4, 5, 7, 8), where solutions are
found in microseconds or milliseconds. Even for larger bottle
counts (11, 14), the algorithm considers still solutions, albeit
with a noticeable increase in time and states checked. Using an
admissible heuristic likely contributes to the algorithm’s ability
to find optimal solutions in terms of solution length. The
increase in solution length with the number of bottles further
underscores the A* algorithm’s effectiveness in handling more
complex problems.

Despite its effectiveness, the solver exhibits apparent
limitations as the number of bottles increases. The most
significant limitation is the rapid, potentially exponential
growth in “States Checked” and “Time (s),” leading to
prohibitively long computation times for larger N values (e.g.,
16, 18, or 20 bottles). This exponential growth also poses a
substantial risk of memory issues, such as the system running
out of available memory, as the storage required for the open
and closed lists in A* could quickly become enormous, leading
to out-of-memory errors, which can cause the program to crash
or become unresponsive.

The solver will likely struggle with configurations
involving many bottles or inherently requiring a very long
solution path. The quality of the heuristic is crucial for
performance. An admissible heuristic guarantees optimal
solutions, and a more informative heuristic (one that estimates
the cost to the goal more accurately without overestimating)
significantly reduces the number of states checked,
consequently decreasing the computation time. A weaker
heuristic would result in much higher “States Checked” and
“Time (s)” for the same problem complexity.

V. CONCLUSION

 The Water Sort Puzzle, a captivating logic game, presents a
unique challenge with its increasing complexity as the number
of bottles and colours grows. This paper introduces a novel
approach to solving this problem by developing an automated
solver using the A* search algorithm in C++. A custom
heuristic function was crafted to guide the search efficiently,
identifying “colour breaks” within bottles to estimate the
remaining cost to a solved state. The solver’s effectiveness in
finding solutions across various puzzle configurations, from 3
to 14 bottles, consistently yielding optimal or near-optimal
solution lengths, underscores the power of the A* algorithm in

navigating vast state spaces to solve combinatorial problems
like the Water Sort Puzzle.

This research introduces a robust, C++-based solver for the
Water Sort Puzzle, capable of automatically determining the
optimal sequence of moves. By detailing the underlying data
structures, algorithms, and the strategic design of the heuristic
function, this paper provides a transparent and reproducible
framework for solving similar combinatorial problems. The
practical applicability of the A* algorithm in real-world puzzle-
solving scenarios is underscored by a thorough performance
analysis, which evaluates metrics such as solution length, states
checked, and computation time across diverse configurations.
The insights gained from this work reinforce the importance of
informed search strategies in artificial intelligence and offer a
valuable open-source solution for the Water Sort Puzzle
community.

While the current solver effectively handles a range of
puzzle complexities, several avenues exist for future work to
enhance its performance and utility. One key area is exploring
more sophisticated or domain-specific heuristics, which could
further reduce the number of states checked and computation
time, especially for highly complex puzzles. Experimenting
with different search algorithms, such as Iterative Deepening
A* (IDA*) or metaheuristics, could offer alternative
approaches to compare performance and explore trade-offs
between optimality and speed. Another crucial direction is
improving scalability to handle an even larger number of
bottles or varying bottle capacities. Furthermore, developing a
user-friendly graphical interface (GUI) would make the solver
more accessible and interactive for a broader audience.
Implementing a puzzle generator to create challenging and
guaranteed solvable puzzles would also be a valuable addition.
Finally, investigating parallel computing techniques for the
search process could significantly reduce execution time for the
most demanding puzzle instances, paving the way for exciting
future developments.

GITHUB REPOSITORY

https://github.com/qodriazka/watersort-solver

VIDEO LINK ON YOUTUBE

https://youtu.be/whu_MWEt9o4?si=h9onC6UDl6d3KtGB

ACKNOWLEDGMENT

I express my deepest gratitude to God Almighty for His
endless guidance, blessings, and strength throughout the
journey of completing this paper. I also thank Dr. Nur Ulfa
Maulidevi, S.T, M.Sc., and Dr. Ir. Rinaldi Munir, M.T., for
their invaluable role as the IF2211 Algorithm Strategy lecturer.
Their guidance and comprehensive explanations have
significantly contributed to my understanding of the subject
matter, providing a strong foundation for this work.

REFERENCES

[1] E. P. Team, “Understanding AI search algorithms,” Elastic Blog, May
15, 2025. https://www.elastic.co/blog/understanding-ai-search-

algorithms

https://github.com/qodriazka/watersort-solver
https://youtu.be/whu_MWEt9o4?si=h9onC6UDl6d3KtGB

IF2211 Algorithm Strategy Paper, Semester II Academic Year 2024/2025

[2] GeeksforGeeks, “State space search in AI,” GeeksforGeeks, Apr. 24,
2025. https://www.geeksforgeeks.org/artificial-intelligence/state-space-

search-in-ai/

[3] GeeksforGeeks, “Difference between Informed and Uninformed Search

in AI,” GeeksforGeeks, Feb. 16, 2023.
https://www.geeksforgeeks.org/artificial-intelligence/difference-

between-informed-and-uninformed-search-in-ai/

[4] M. Kumar, “Difference between Informed and Uninformed search,”
upGrad Blog, May 08, 2025. https://www.upgrad.com/blog/difference-

between-informed-and-uninformed-search/

[5] “8 Puzzle problem in AI,” AlmaBetter, Jan. 29, 2024.
https://www.almabetter.com/bytes/tutorials/artificial-intelligence/8-

puzzle-problem-in-ai

[6] A. E. Iordan, “A comparative study of the A* heuristic search algorithm
used to solve efficiently a puzzle game,” IOP Conference Series

Materials Science and Engineering, vol. 294, p. 012049, Jan. 2018, doi:

10.1088/1757-899x/294/1/012049.

[7] A. Martelli, “On the complexity of admissible search algorithms,”

Artificial Intelligence, vol. 8, no. 1, pp. 1–13, Feb. 1977, doi:

10.1016/0004-3702(77)90002-9.

[8] M. Katz and C. Domshlak, “Optimal admissible composition of

abstraction heuristics,” Artificial Intelligence, vol. 174, no. 12–13, pp.

767–798, Apr. 2010, doi: 10.1016/j.artint.2010.04.021.

[9] K. M. Passino and P. J. Antsaklis, “A metric space approach to the
specification of the heuristic function for the A* algorithm,” IEEE

Transactions on Systems Man and Cybernetics, vol. 24, no. 1, pp. 159–

166, Jan. 1994, doi: 10.1109/21.259697.

[10] B. Sakcak, L. Bascetta, G. Ferretti, and M. Prandini, “An admissible

heuristic to improve convergence in kinodynamic planners using motion
primitives,” IEEE Control Systems Letters, vol. 4, no. 1, pp. 175–180,

Jun. 2019, doi: 10.1109/lcsys.2019.2922166.

[11] L. Mandow and José. L. P. De La Cruz, “Multiobjective A * search with
consistent heuristics,” Journal of the ACM, vol. 57, no. 5, pp. 1–25, Jun.

2008, doi: 10.1145/1754399.1754400.

[12] H. Farreny, “Completeness and Admissibility for General Heuristic

Search Algorithms,” Journal of Heuristics, vol. 5, no. 3, pp. 353–376,

Jan. 1999, doi: 10.1023/a:1009617818678.

[13] “What is Sortago Water Sort Puzzle? | FAQs, Tips & Tricks | Fetch Play

Game.” https://fetch.com/blog/treat-yourself/earn-free-gift-cards-

playing-sortago-water-sort-puzzle-with-fetch-play

[14] Tanjuntao, “GitHub - tanjuntao/water-sort-puzzle: Solve water sort

puzzle problem(Chinese name ‘水排序’) using DFS and BFS,” GitHub.

https://github.com/tanjuntao/water-sort-puzzle

[15] ColinGJohnson, “GitHub - ColinGJohnson/watersort-solver: Solves

‘water sort puzzle’ style games on your Android device.,” GitHub.

https://github.com/ColinGJohnson/watersort-solver

STATEMENT

Hereby, I declare that the paper I have written is my work, not

an adaptation or translation of someone else’s paper, and is not

plagiarized.

Bandung, June 23, 2025

Qodri Azkarayan

13523010

	I. Introduction
	II. Literature Review
	A. Search Algorithm
	B. Heuristic Search and A* Algorithm
	C. Water Sort Puzzle

	III. Implementations
	A. Problem Formalization
	B. Operations and Transitions
	C. A* Search Algorithm
	D. Heuristic

	IV. Experiment
	A. Test Case
	B. Analysis

	V. Conclusion
	Github Repository
	Video Link on YouTube
	Acknowledgment
	References

